Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting
نویسندگان
چکیده
The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lavaice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water. © 2018 Elsevier Inc. All rights reserved.
منابع مشابه
Lava heating and loading of ice sheets on early Mars: Predictions for meltwater generation, groundwater recharge, and resulting landforms
Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted “icy highlands” ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian – Early Hesperian ridged plains unit. We explore the relationshi...
متن کاملSources of water for the outflow channels on Mars: Implications of the Late Noachian “icy highlands” model for melting and groundwater recharge on the Tharsis rise
From the Late Noachian period, through the Hesperian, and into the Amazonian periods on Mars, large outflow channels were formed. Many are interpreted to have originated through the catastrophic discharge of groundwater from martian aquifers, involving the release of up to millions of cubickilometers of water. Such a mechanism for outflow channel formation requires that martian aquifers were su...
متن کاملReconciling channel formation processes with the nature of elevated outflow systems at Ophir and Aurorae Plana, Mars
[1] Many Hesperian outflow channels head at elevations compatible with aquifer recharge beneath the Martian south polar cap, and such channels are widely interpreted as the products of this recharge. Some outflow channels head at greater elevations that are inconsistent with southern recharge, including three systems located in Aurorae Planum and eastern Ophir Planum. These three systems have p...
متن کاملInvestigations into the Cerberus Outflow Channels, Mars
Mars Orbiter Camera (MOC) images and Mars Orbiter Laser Altimeter (MOLA) data on the Mars Global Surveyor (MGS) spacecraft show evidence for three catastrophic outflow channels around the Cerberus Plains region, Mars. The morphologies seen in MOC images located within channels seen in gridded MOLA topography are similar to those found in catastrophic flood terrains on Earth, such as the Channel...
متن کاملHeat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms
We review new advances in volcano–ice interactions on Mars and focus additional attention on (1) recent analyses of the mechanisms of penetration of the cryosphere by dikes and sills; (2) documentation of the glacial origin of huge fan-shaped deposits on the northwest margins of the Tharis Montes and evidence for abundant volcano–ice interactions during the later Amazonian period of volcanic ed...
متن کامل